
Degree course: Master of Science in Engineering

Author: Pascal Mainini

Advisor: Prof. Dr. Reto Koenig

Constituent: BFH, Research Institute for Security in the Information Society, E-Voting Group

Date: 2019-01-25

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Sanitizable and Redactable Signatures
Report for MTE7101 (MSE Project I)





Abstract

Besides the well known digital signatures, many other and lesser known schemes exist. Among
them are sanitizable and redactable signatures, which allow for modifications in signed messages
without breaking the validity of the signature. Since nearly twenty years, they form an interesting
and active field of research.

As a preparation for future work, we have investigated those non-classic schemes for digital sig-
natures, focusing on sanitizable and redactable signatures. This document is a summary of our
investigations and aims to provide a quick introduction to the topic, as well as to serve as a starting
point into the relevant literature.

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 i





Contents

Abstract i

1. Introduction 1

2. Digital Signature Schemes 3
2.1. Classic Digital Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Functional and Malleable Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. General Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2. Specific Functional Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3. Specific Malleable Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Further Digital Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1. Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2. Aggregate Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3. Undeniable Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4. Designated Verifier Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Sanitizable and Redactable Signatures 9
3.1. Sanitizable Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2. Redactable Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1. Common Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2. Security Notions for SSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3. Relations Between Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Conclusion and Outlook 17

Glossary 19

Bibliography 21

APPENDICES 23

A. Appendix A: Presentation Contents 23

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 iii



iv Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



1. Introduction

This document summarizes the efforts of the last four months, in which we have tried to map the
landscape of digital signature schemes. With possible future work in mind, we focused on redactable
and sanitizable signature schemes, aiming to provide the interested reader with a quick introduction
to the topic and a starting point into relevant literature. In order to stay concise, we do not document
our research into adjacent literature regarding cryptographic primitives used by those schemes, as
well as other topics discussed during that time. The structure of this document is a follows:

In Chapter 2, we provide an overview of digital signature schemes in general and the definition
and security notions of classic digital signatures. To position sanitizable and redactable signature
schemes in the broader landscape of digital signatures, we then discuss some digital signature
schemes with less known properties.

Chapter 3 then specifically covers sanitizable and redactable signatures. For both, it provides formal
definitions and a review of the current state of the art. It closes with a unified view on their security
notions and the relations between those.

As a short overview of this work, the graphical representation given in Appendix A may be helpful.

Finally, we would like to thank Reto E. Koenig and Rolf Haenni for proposing the topic. Also, we
are deeply grateful for the sheer endless amount of fruitful discussions with Reto E. Koenig.

It is impossible for a man to learn what he thinks he already knows. – Epictetus

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 1



2 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



2. Digital Signature Schemes

Beside well-known ‘classic’ schemes such as RSA and DSA signatures, a broad range of additional
schemes has been developed over the last two decades, supporting manifold application scenarios.
In this chapter, we provide an overview and a classification of such schemes, subsumed as digital
signature schemes (DSS). It should serve as a high-level map of the DSS landscape, without providing
to many details about individual instances. Larger parts of this chapter are based on the extensive
review of DSS in [DDH+15], which provide thorough descriptions and underlying definitions.

The classification in this chapter follows [DDH+15], which separates schemes into functional and
malleable (or also algebraic) signature schemes (see Section 2.2). Malleable schemes (MS) are further
divided into MS for arithmetics and MS for editing. The authors of [DDH+15] point out, that their
classification has been chosen somewhat arbitrarily; however fitting well our purpose, we have also
taken it as a base for our own classification.

After presenting functional and malleable schemes, we conclude in Section 2.3 with an overview of
further DSS, which we have identified during our research.

A graphical representation of our classification is given in Figure 2.1. Schemes relevant for this
document are highlighted.

2.1. Classic Digital Signature Schemes

For easier presentation and understanding of the different or additional properties of the more
advanced schemes, we provide a short and informal definition of classic digital signature schemes,
based on [KL14, 12.2, p. 441], in this section.

A classic DSS consists of the following three probabilistic polynomial time (efficient) algorithms:

1. Algorithm KeyGen(1λ) which outputs a public-/secret key pair (pk , sk) based on a security
parameter λ:

(pk , sk)← KeyGen(1λ)

2. Algorithm Sign(sk , m)which signs message m using secret key sk and outputs a signature σ:

σ ← Sign(sk , m)

3. Algorithm Verify(pk , σ,m)which takes as input the public key pk , signature σ and the message
m. It outputs a bit b ∈ {0, 1}with b = 1 if the signature is valid and b = 0 otherwise:

b ← Verify(pk , σ,m) b ∈ {0, 1}

The DSS must fulfill the following (security) notions:

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 3



D
igital Signature Schem

es

C
lassical D

SS

B
lind Signatures

U
ndeniable Signatures M

alleable (A
lgebraic) Signatures

D
esignated V

erifier Signatures

Functional Signatures

A
ggregate Signatures

For A
rithm

etics

For 'editing'

O
perational Signatures

H
om

om
orphic

H
om

om
orphic A

ggregate

R
edactable

Sanitizable

A
ppend-only

Transitive

A
lgebraic for Sets

Linear

Polynom
ial

Full

Protean

G
roup Signatures

R
ing Signatures

B
lank Signatures

Proxy Signatures

Policy-based Signatures

A
ttribute-based Signatures

Figure
2.1.:O

verview
ofD

igitalSignature
Schem

es

4 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



Correctness A DSS is required to be correct: Except with negligible probability, it holds that
Verify(pk ,Sign(sk , m), m) = 1 for any (pk , sk) output by KeyGen and for any message m.

Unforgeability A DSS is required to be existentially unforgeable under chosen-message attacks (EUF-
CMA). A forgery is a valid signature for a message and a public key belonging to a given signer,
where the message has not been signed by the signer before. EUF-CMA requires, that an
adversary is not able to output such a forgery, even if it can obtain signatures by the signer on
many messages of its choice.

We note, that DSS often use hash-then-sign: Due to limitations in the message space and efficiency of
the underlying public key crypto system, typically a hash of the message (taken using a collision
resistant hash function) and not the message itself is signed in a DSS.

2.2. Functional and Malleable Signature Schemes

2.2.1. General Frameworks

Functional and malleable signature schemes can roughly be divided into general frameworks, which
support the creation of individual functional or malleable schemes, and in concrete instantiations
of individual schemes. Due to their generality, the frameworks may be very inefficient and must
sometimes only be considered as feasibility results. [DDH+15] identify the following general
frameworks:

• Policy-based signatures. Here, the message space a signer is allowed to sign, can be restricted by
a policy. This may be seen as a special case of functional signatures, where the policy is the
function f (see below).

• P-Homomorphic signatures. These are signature schemes which allow for public computations
on signed data.

• Malleable signatures for general transformations. Generalized signature schemes, which allow
transformations on message-signature pairs, while keeping the signature valid.

• Functional signatures. Allow for additional signing keys which are restricted by a given function
f . Signatures using those keys can only be generated for messages m in the range of f , i.e. on
f (m).

• Operational signatures. Recently introduced as a more general framework, uniting functional
and malleable signatures.

We do not further detail those frameworks here and refer to [DDH+15] for exact definitions, as
well as concrete constructions. In the following, we present a selection of specific functional and
malleable signatures, which we encountered frequently during our research.

2.2.2. Specific Functional Signatures

A well known example of functional signatures are group signatures and related to them ring signatures
and proxy signatures. In group signatures, a manager sets up a group with multiple members having
individual keys. Each member of the group can then anonymously create signatures, however the
group manager can revoke the anonymity using his key. Ring signatures are quite similar to group
signatures, however there is no manager and no explicit group setup required. Therefore, there is

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 5



also no way to revoke anonymity. In proxy signatures, a signer may delegate its signing rights to
another party; this delegation may also occur hierarchically.

Another type of functional signatures are attribute based signatures, where signing keys only work for
messages having specific attributes.

Finally, blank signatures are another interesting scheme, which is also somewhat related to proxy
signatures. In blank signatures, a signer may delegate signing rights for templates. These templates
contain fixed and exchangeable parts. The delegated signer may then sign a message consisting of
the fixed parts of the template as well as a single option chosen per exchangeable part.

2.2.3. Specific Malleable Signatures

Malleable signatures can be divided logically into two classes: homomorphic (arithmetic) and
malleable for editing.

Homomorphic signatures allow for arithmetic computations on signed messages. They are separated
into distinct types following [DDH+15]: linearly homomorphic, polynomial homomorphic and
fully homomorphic – depending on the applicable functions. Furthermore, homomorphic aggregate
signatures support the aggregation of multiple homomorphic signatures (see also Section 2.3.2). It is
important to note, that homomorphic signatures have different security notions: due to their nature,
existential forgeries are explicitly possible!

Malleable signatures for editing can be separated into different classes as well: sanitizable, redactable and
append-only. Append-only schemes allow to publicly append additional blocks to a message and
update the signature accordingly. Redactable signatures provide the opposite, allowing to redact (i.e.
remove or censor) blocks of a message. In sanitizable schemes, modifications of signed messages
may be conducted in a predefined way. Only recently, [KPSS18] have introduced the notion of
protean signatures, potentially uniting redactable and sanitizable signatures. Furthermore, [DDH+15]
present transitive signatures and algebraic signatures for sets as additional, related concepts, which we
do not further detail.

In Chapter 3, we will revisit redactable and sanitizable signatures in more detail and review the
current state of the art.

2.3. Further Digital Signature Schemes

Besides functional and malleable signatures, we have identified further types of digital signatures,
which we shortly describe in the following.

2.3.1. Blind Signatures

Blind signatures, introduced by Chaum[Cha83, Cha85] are an early extension of classic DSS. Besides
Keygen, Sign and Verify, they consist of two additional algorithms:

1. Algorithm Blind which takes the public key of the signer and the message, and returns blinded
parameters.

2. Algorithm Unblind which takes the public key of the signer, a blinded signature and the blinded
parameters, and returns the unblinded signature.

6 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



These two algorithms enable signatures, in which the signer does not know about the contents of
the message to be signed. The signature on the later unblinded message is valid and can be verified
using the signers public key.

2.3.2. Aggregate Signatures

Aggregate signatures support aggregation of multiple signatures of distinct messages (potentially
from different signers) into a single, succinct signature. Verification occurs on the aggregated
signature, together with the individual messages. Success indicates, that the distinct original
messages have effectively been signed by the distinct users.

2.3.3. Undeniable Signatures

Undeniable signatures enable the signer to choose who can verify a signature. For this, either one of
two zero-knowledge protocols is run interactively between signer and verifier. A signature verifies
correctly, if the confirmation protocol is executed, or it does not verify if the so-called disavowal
protocol is executed.

2.3.4. Designated Verifier Signatures

Designated verifier signatures can be seen as an improvement of undeniable signatures, eliminating
the requirement of interactive interaction. Various schemes have been adapted to be designated
verifier schemes by using a disjunctive proof of knowledge. We further describe this technique when
reviewing [DKS16] in Section 3.2.2 (p. 12).

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 7



8 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



3. Sanitizable and Redactable Signatures

The notions of sanitizing and redacting might look quite similar at first: it is conceivable to implement
redaction as a form of sanitization, where parts to be redacted are simply replaced by a special
‘blanking’, or NULL symbol. However, already the visibility of a redaction may be considered
as a leak in privacy, depending on the content of the redacted data. Due to this, both schemes
are generally treated independently in the literature, even though there is some overlap between
definitions and security notions, and some schemes might bridge the gap (e.g. [KPSS18]).

In this chapter, we first take a look at sanitizable (SSS) and later at redactable signature schemes
(RSS). For both, we provide definitions and an overview of the current state of the art. As an
important amount of research has been conducted and is still going on in this field, providing
complete coverage proved to be difficult. We thus have tried to find the relevant corner stones for
both types of signatures, while focusing more on RSS. This focus is due to our upcoming work,
which mainly targets RSS.

3.1. Sanitizable Signature Schemes

Using sanitizable signatures, a signer can delegate signing rights to a designated sanitizer. The
sanitizer can then sanitize, i.e. modify, (parts of) the message in a way predetermined by the signer.
The resulting signature on a properly sanitized message still verifies correctly and can be traced back
to the original signer.

3.1.1. Definition

Compared to DSS (2.1, p. 3), SSS require some additional, efficient algorithms. We now give a
definition of all algorithms of a SSS, based on [BFF+09]:

1. Algorithm KeyGensig(1λ)which outputs a public-/secret key pair (pksig, sksig) for the signer,
based on a security parameter λ:

(pksig, sksig)← KeyGensig(1λ)

2. AlgorithmKeyGensan(1λ)which outputs a public-/secret key pair (pksan, sksan) for the sanitizer,
based on a security parameter λ:

(pksan, sksan)← KeyGensan(1λ)

3. Algorithm Sign(sksig, pksan, m, adm) which signs message m using the secret key sksig of the
signer, the public key pksan of the sanitizer and the description of admissible sanitization adm.
It outputs a signature σ:

σ ← Sign(sksig, pksan, m, adm)

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 9



4. Algorithm Sanitize(pksig, sksan, m, σ,mod) which sanitizes a message m using sanitization
information mod , the secret key sksan of the sanitizer, the public key pksig of the signer and
the signature σ. It outputs (m′, σ′) where m′ is the sanitized message and σ′ the sanitized
signature:

(m′, σ′)← Sanitize(pksig, sksan, m, σ,mod)

5. Algorithm Verify(pksig, pksan, σ,m)which takes as input the public key pksig of the signer, the
public key pksan of the sanitizer, signature σ and the message m. It outputs a bit b ∈ {0, 1}
with b = 1 if the signature is valid and b = 0 otherwise:

b ← Verify(pksig, pksan, σ,m) b ∈ {0, 1}

6. Algorithm Proof(sksig, pksan, m, σ, (m1, σ1), . . . , (mk , σk)) which takes as input the secret key
sksig of the signer, the public key pksan of the sanitizer, a message m and signature σ, as well as
a set of, say k , additional message-signature pairs (mi , σi)i=1,2,...,k . It outputs a proof string
π ∈ {0, 1}∗:

π ← Proof(sksig, pksan, m, σ, (m1, σ1), . . . , (mk , σk)) π ∈ {0, 1}∗

7. Algorithm Judge(pksig, pksan, σ,m, π) which takes as input the public key of the signer pksig ,
the public key of the sanitizer pksan, a signature σ, message m and a proof π. It outputs a
decision d ∈ {sig, san}, indicating which party has created the message-signature pair (signer
or sanitizer):

d ← Judge(pksig, pksan, σ,m, π) d ∈ {sig, san}

The algorithms Proof and Judge are required for the security notion of accountability, which we
describe in Section 3.3 below.

3.1.2. State of the Art

Sanitizable signatures were originally formulated by Ateniese et al. [ACdMT05], sometimes also
Johnson et al. [JMSW02] is attributed. In their work, a formal definition of SSS is given and the
fundamental security notions of unforgeability, immutability, privacy, transparency and accountability
have been introduced. Additionally, [ACdMT05] provide a construction based on chameleon hashes,
where the basic idea is that admissible parts are hashed using a chameleon hash, while each non-
admissible part is hashed using a standard cryptographic hash. Anyone in possession of the secret
key for the chameleon hash can then change such a part and efficiently calculate a collision, thus
keeping the signature valid.

The security notions of [ACdMT05] have been revisited by Brzuska et al., [BFF+09], which provide
stronger definitions and find a contradiction in the relation of unforgeability and accountability. We
revisit these notions and their relations in Section 3.3.

Later, again extensions were proposed, which not only include the message and signature, but
also include adm ([GQZ11]) or provide a notion of strong unforgeability ([KSS16]). Finally, further
security notions have been added, especially the notions of unlinkability and invisibility, introduced
in [BFLS10] and [CDK+17] respectively. We do not detail these further.

10 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



Recently, a position paper by Bilzhause et al., [BPS17], summarizes the past, present and future of
RSS, as well as SSS. It is a concise review of the current state of the art, definitions and research
opportunities.

3.2. Redactable Signature Schemes

The notion of redacting is that of removing or censoring (‘blacking out’) parts of a signed message,
which is different from sanitization, as stated in the introduction. Opposed to SSS, redactions of a
message can in general be conducted publicly, i.e. by any party, requiring only access to the signed
message and the public key of the signer. The resulting signature on a properly redacted message
then still verifies correctly and can be traced back to the original signer.

RSS provide an interesting primitive for privacy enhancing/preserving cryptography: We can think of
a variety of use cases (for instance in e-health and e-government), which follow a basic protocol,
between three independent parties, similar to the following:

1. A user requests that an authority confirms the authenticity of a message (or more specifically,
a set of data). The message could also be provided by the authority without prior request.

2. The message is signed by the authority using a RSS.

3. The user can redact parts of the signed message and forward it to any third party.

4. The third party can verify the (redacted) signature and thus the authenticity of the message
without gaining any insight about the redacted parts.

3.2.1. Definition

RSS require only a single additional, efficient algorithm, compared to DSS (2.1, p. 3), namely Redact.
We now give a definition of all algorithms of a RSS:

1. Algorithm KeyGen(1λ) which outputs a public-/secret key pair (pk , sk) based on a security
parameter λ:

(pk , sk)← KeyGen(1λ)

2. Algorithm Sign(sk , m, adm) which takes as input the secret key of the signer sk , message m
and a description of admissible redactions adm. It outputs a signature σ:

σ ← Sign(sk , m, adm)

3. Algorithm Verify(pk , σ,m)which takes as input the public key pk , signature σ and the message
m. It outputs a bit b ∈ {0, 1}with b = 1 if the signature is valid and b = 0 otherwise:

b ← Verify(pk , σ,m) b ∈ {0, 1}

4. AlgorithmRedact(pk , σ,m,mod)which takes as input the public key of the signer pk , signature
σ, message m and some modification instructions mod . It outputs (m′, σ′) where m′ is the
redacted message and σ′ the redacted signature:

(m′, σ′)← Redact(pk , σ,m,mod)

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 11



3.2.2. State of the Art

Early and independent initial publications about RSS are given by Steinfeld et al., [SBZ01], and also
Johnson et al., [JMSW02].We find some similarities between the proposed constructions, especially
the usage of Merkle-trees ([Mer80]) to reduce signature size. The authors also propose initial security
notions: While [JMSW02] only defines unforgeability, [SBZ01] already introduces some notion of
privacy.

Later, Brzuska et al., [BBD+10], contribute the first formal definitions for the notions of privacy
and transparency in the context of RSS, after having revisited the security notions of SSS before
([BFF+09]). We describe these notions in Section 3.3 below. As a practical contribution, they present
a RSS construction for tree based data, whose concept can be outlined as follows: Using a classic
DSS, all edges of a given tree are signed. Also, for all edges, all adjacent vertices are decorated using
a distinct random number and signed as well. This prevents attacks in which multiple trees could
be matched and mixed. The redactable signature over the tree is then simply the set of all these
signatures and redacting is conducted by omitting individual signatures from the set (cf. [BBD+10,
Section 5.1] for more details).

The usage of so-called cryptographic accumulators has motivated a range of constructions for RSS.
[PSPDM12] provide two constructions for unordered sets as well as for ordered lists (‘linear doc-
uments’). [DPSS15] take the idea further and provide a general framework for RSS, which can be
applied to arbitrary data structures. The formalization of the framework is based on [BBD+10], how-
ever the Sign and Redact algorithms are extended with structures describing admissible redactions,
modification instructions and auxiliary redaction information (see [DPSS15, Section 2.1]. Based on
this additional data, the framework can be adjusted to individual data structures. As an example,
the authors provide two constructions, again one for sets and one for ordered lists, which are both
based on any DSS and cryptographic accumulators. For the RSS for sets ([DPSS15, Section 4]), the
basic principle is as follows: An accumulator representing the set is computed and then signed using
the DSS. For verification, a witness for each element in the set (given) as well as the signature of the
accumulator have to be verified. Redaction is performed by throwing away witnesses corresponding
to redacted elements. The RSS for ordered lists ([DPSS15, Section 5]) is quite similar, however it takes
some precautions when encoding positions of elements, as redactions would be trivially identifiable
from missing elements in the order. Both schemes support fixed (unredactable) elements defined by
the signer and also dependencies between elements.

Normally, RSS do not provide the notion of accountability: it cannot be determined, if a signature
has been created by the signer or through redaction (transparency notion, see Section 3.3). A
formalization of accountability in RSS is presented in [PS15]. The authors distinguish between an
on-line- and an off-line form. In the latter, everyone can derive the accountable party (so-called
public accountability), however this breaks the transparency notion. A construction based on a
combination of a SSS, combined with a RSS is presented, which offers both forms of accountability,
depending on the underlying SSS.

Finally, as an example of what can be achieved by combining RSS with other primitives, we describe
[DKS16], which is a RSS specifically targeted at a use case in e-health. It offers the interesting
properties of signer anonymity and verifiability only through designated verifiers. The RSS is a black
box construction, making use of generic primitives for redactable signatures (e.g. [DPSS15]), group
signatures and proof systems for zero-knowledge proofs of knowledge. Signer anonymity is then
obtained by generating redactable signatures on a message using an ephemeral RSS key pair, of
which the public key is certified using a group signature. Designated verifiability is achieved

12 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



using a disjunctive proof of knowledge.1 The authors state that, depending on the underlying RSS,
such proofs may be expensive to compute (cf. [DKS16, Section 4]). In order to increase efficiency,
they introduce key-homomorphic signatures, which enable a more efficient disjunctive proof of
knowledge. As a side effect, the authors also claim to obtain the first group redactable signature scheme,
which follows simply from omitting the notions related to the designated verifiability.

Again, we refer to [BPS17] and also [DDH+15] for further references of current state of the art.

3.3. Security Notions

We review the security notions of SSS and RSS. Some are shared by both schemes, while SSS require
some additional notions. We first describe all notions shared between the two schemes, pointing out
important differences. Then, the additional notions of SSS are discussed. We base our discussion
on [BFF+09, BBD+10, BPS17]. As for DSS, we also state correctness, which is not strictly a security
notion.

3.3.1. Common Security Notions

The following notions exist for SSS and RSS equally:

Correctness Given correct parameters, a signature which was computed by a RSS or SSS verifies
correctly, under the assumption that all involved parties behave honestly. The same applies
also to redacted or sanitized signatures.

Unforgeability This notion is similar to the unforgeability notion for DSS: Without having access to
the relevant secret key, the computation of a valid signature on any message is not possible. It
must however be adapted to SSS and RSS:

For SSS, a forgery for any party except the signer and the sanitizer must not be possible.
Clearly, the sanitizer constructs a deliberate forgery (within admissible bounds) of a message
signed by the signer.

For RSS, forging a signature for any message, which is not a valid redaction, must be infeasible
without access to the secret key of the signer.

Privacy No information about the original message must be obtained from a sanitized or redacted
message.

Transparency Signatures on unredacted data must not be distinguishable from signatures obtained
by redaction or sanitization; i.e. it must not be decidable from a message and a signature, if the
message has been sanitized or redacted.

1Non-interactive proofs of knowledge are in general not designated, as the transcript can be verified by anyone using
the given values. A well known technique to transform non-interactive proofs into designated proofs is based on a
disjunctive (‘OR’) proof demonstrating either knowledge of a valid signature or knowledge of the verifiers secret key.
Such a proof is convincing only to the verifier, because any valid transcript could also have been generated by the
verifier itself. This construction is due to Jakobsson, Sako and Impagliazzo, [JSI96].

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 13



3.3.2. Security Notions for SSS

These notions only exist for SSS:

Immutability The sanitizer must not be able to create correctly verifying signatures for messages,
which contain sanitizations which are not defined as admissible in adm (i.e. contain not
admissible sanitizations).

Additional sanitizing attacks: This is an attack, in which a sanitized message is again sanitized
by a different, malicious sanitizer. Assuming different keys per sanitizer, the notion given in
[BFF+09] still holds in this case.

Accountability Neither the signer nor the sanitizer should be held responsible for signatures coming
from the other party. Using Proof, the signer can generate proofs which convince Judge that a
signature has not been created by itself (or vice versa). This also requires, that neither signer
nor sanitizer can make up false proofs.

3.3.3. Relations Between Notions

The security notions described above are not completely independent and have some relations
to each other, which are depicted in Figure 3.1. The definition of these relations is also due to
[BFF+09, BBD+10]. We now describe the relations for SSS, the relations of privacy and transparency
similarly apply to RSS.

Accountability Unforgeability

Transparency Privacy

Immutability

Figure 3.1.: Relations Between Security Notions

The first relation implies that privacy follows from transparency. The relation is derived from the
proof of privacy in [BFF+09], in which an adversary may submit two message-modification tuples
and an oracle returns a sanitized signature on one of them.The adversary must then not be able to
decide, which of the input tuples has been sanitized (clearly, for this the sanitized messages must be
identical). Transparency states, that signatures of the signer and sanitizer must be indistinguishable,
thus the oracle algorithm may be changed to use Sign instead of Sanitize. However, as the proof of
privacy requires the sanitized messages to be identical, the signatures must always be different for
the same message. We note that transparency is a stronger notion than privacy, as not only the structure
and content of a message is protected, but also if a sanitization or redaction has been performed.

14 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



The second relation implies that unforgeability follows from accountability (thereby contradicting
[ACdMT05], possibly due to separate/different consideration of signer-accountability and sanitizer-
accountability). The idea here is to provide Judge with a forgery as input. Judge then cannot decide,
which party to account for the signature.

Finally, using additional proofs which we do not detail, [BFF+09] show that there are no further
relations between the security notions. The basic idea of these proofs is to start from a SSS which is
secure, i.e. has all given notions, and to then construct multiple modified versions of it, which are
missing a single, separate notion every time.

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 15



16 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



4. Conclusion and Outlook

During our research, we were able to discover a larger part of the landscape of digital signature
schemes. Our focus on sanitizable and redactable schemes enabled us to review most relevant
milestones in that field of research, which spans over a period of almost the last twenty years. We
have written down our insights in this report and presented them at Bern University of Applied
Sciences in the course of this project. Deeply thinking about SSS and RSS, during writing and many
discussions, made a lot of things clearer to us.

We are confident, that this report will serve us well as a reference for the next steps to come: We look
forward to gain further insights by applying the acquired knowledge in the implementation of a
redactable, maybe also sanitizable signature scheme for a concrete, yet to be defined use case. We
also hope to devise our own construction to further deepen our knowledge and maybe even actively
participate in ongoing research.

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 17



18 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



Glossary

Chameleon Hash Chameleon hashes are a special type of hash function. They enable efficient
calculation of collisions if a secret (or trapdoor) is known..

Digital Signature Scheme (DSS) Generally refers to any classic, well known digital signature
scheme, as for instance the digital signature algorithm (DSA). In this document, DSS refers to
all kinds of signature schemes, including non-classic as described in Chapter 2 (p. 3).

EUF-CMA EUF-CMA is a security definition for digital signature schemes, which signifies ‘existential
unforgeability under chosen message attacks’. A short description is given in Section 2.1 (p. 3).

Hash Function Hash functions map arbitrary sized data to a single, succinct value. We especially
distinguish cryptographic hash functions which require additional properties, like for instance
being collision-resistant.

Primitive (Cryptographic) A cryptographic primitive is a building block, which can be used in
schemes and protocols to achieve a certain functionality, e.g. functions for encrypting or
hashing data.

Protocol (Cryptographic) A cryptographic protocol can be considered as algorithm running be-
tween multiple parties. An example would be interactive zero-knowledge proofs of knowledge.
Protocols may lead to a result on their own or serve as primitive for other uses.

Redactable Signature Scheme (RSS) See detailed introduction in Chapter 3 (p. 9).

Sanitizable Signature Scheme (DSS) See detailed introduction in Chapter 3 (p. 9).

Scheme (Cryptographic) A cryptographic scheme is a defined way to assemble cryptographic
primitives to build more complex functions. An example are the digital signature schemes
introduced in Chapter 2 (p. 3).

Zero Knowledge Proof of Knowledge Zero Knowledge Proofs of Knowledge enable a party to
prove to another party some specific knowledge, without disclosing the actual knowledge.
This may be done in an interactive fashion, where the two parties interact with each other, or
in a non-interactive way, where the proof can be calculated without interaction.

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 19



20 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25



Bibliography

[ACdMT05] Giuseppe Ateniese, Daniel Chou, Breno de Medeiros, and Gene Tsudik, Sanitizable
signatures, 09 2005, pp. 159–177.

[BBD+10] Christina Brzuska, Heike Busch, Oezguer Dagdelen, Marc Fischlin, Martin Franz, Ste-
fan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering,
and Dominique Schröder, Redactable signatures for tree-structured data: Definitions and
constructions, Proceedings of the 8th International Conference on Applied Cryptog-
raphy and Network Security (Berlin, Heidelberg), ACNS’10, Springer-Verlag, 2010,
pp. 87–104.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page,
Jakob Schelbert, Dominique Schröder, and Florian Volk, Security of sanitizable signatures
revisited, Public Key Cryptography – PKC 2009 (Berlin, Heidelberg) (Stanisław Jarecki
and Gene Tsudik, eds.), Springer Berlin Heidelberg, 2009, pp. 317–336.

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder, Unlinkabil-
ity of sanitizable signatures, Public Key Cryptography – PKC 2010 (Berlin, Heidelberg)
(Phong Q. Nguyen and David Pointcheval, eds.), Springer Berlin Heidelberg, 2010,
pp. 444–461.

[BPS17] Arne Bilzhause, Henrich C. Pöhls, and Kai Samelin, Position paper: The past, present,
and future of sanitizable and redactable signatures, Proceedings of the 12th International
Conference on Availability, Reliability and Security (New York, NY, USA), ARES ’17,
ACM, 2017, pp. 87:1–87:9.

[CDK+17] Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and
Daniel Slamanig, Chameleon-hashes with ephemeral trapdoors, Public-Key Cryptography
– PKC 2017 (Berlin, Heidelberg) (Serge Fehr, ed.), Springer Berlin Heidelberg, 2017,
pp. 152–182.

[Cha83] David Chaum, Blind signatures for untraceable payments, Advances in Cryptology
(Boston, MA) (David Chaum, Ronald L. Rivest, and Alan T. Sherman, eds.), Springer
US, 1983, pp. 199–203.

[Cha85] , Security without identification: Transaction systems to make big brother obsolete,
Commun. ACM 28 (1985), no. 10, 1030–1044.

[DDH+15] Denise Demirel, David Derler, Christian Hanser, Heinrich C. Pöhls, Daniel Slamanig,
and Giulia Traverso, Prismacloud d4.4: Overview of functional and malleable signature
schemes. technical report, h2020 prismacloud,, Tech. report, H2020 Prismacloud, 2015.

[DKS16] David Derler, Stephan Krenn, and Daniel Slamanig, Signer-anonymous designated-verifier
redactable signatures for cloud-based data sharing, Cryptology ePrint Archive, Report
2016/1064, 2016, https://eprint.iacr.org/2016/1064.

[DPSS15] David Derler, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig, A general frame-
work for redactable signatures and new constructions, Cryptology ePrint Archive, Report
2015/1059, 2015, https://eprint.iacr.org/2015/1059.

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 21

https://eprint.iacr.org/2016/1064
https://eprint.iacr.org/2015/1059


[GQZ11] Junqing Gong, Haifeng Qian, and Yuan Zhou, Fully-secure and practical sanitizable
signatures, Information Security and Cryptology (Berlin, Heidelberg) (Xuejia Lai, Moti
Yung, and Dongdai Lin, eds.), Springer Berlin Heidelberg, 2011, pp. 300–317.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner, Homomorphic
signature schemes, Proceedings of the The Cryptographer’s Track at the RSA Conference
on Topics in Cryptology (London, UK, UK), CT-RSA ’02, Springer-Verlag, 2002, pp. 244–
262.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo, Designated verifier proofs and
their applications, Advances in Cryptology — EUROCRYPT ’96 (Berlin, Heidelberg)
(Ueli Maurer, ed.), Springer Berlin Heidelberg, 1996, pp. 143–154.

[KL14] Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography, Second Edition,
2nd ed., Chapman & Hall/CRC, 2014.

[KPSS18] Stephan Krenn, Henrich C. PÃ¶hls, Kai Samelin, and Daniel Slamanig, Protean signature
schemes, Cryptology ePrint Archive, Report 2018/970, 2018, https://eprint.iacr.
org/2018/970.

[KSS16] Stephan Krenn, Kai Samelin, and Dieter Sommer, Stronger security for sanitizable sig-
natures, Data Privacy Management, and Security Assurance (Cham) (Joaquin Garcia-
Alfaro, Guillermo Navarro-Arribas, Alessandro Aldini, Fabio Martinelli, and Neeraj
Suri, eds.), Springer International Publishing, 2016, pp. 100–117.

[Mer80] Ralph Merkle, Protocols for public key cryptosystems, 04 1980, pp. 122–134.

[PS15] Henrich C. Pöhls and Kai Samelin, Accountable redactable signatures, Proceedings of the
2015 10th International Conference on Availability, Reliability and Security (Washing-
ton, DC, USA), ARES ’15, IEEE Computer Society, 2015, pp. 60–69.

[PSPDM12] Henrich C. Poehls, Kai Samelin, Joachim Posegga, and Hermann De Meer, Length-hiding
redactable signatures from one-way accumulators in o(n), Tech. Report MIP-1201, Faculty of
Computer Science and Mathematics (FIM), University of Passau, 2012.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng, Content extraction signatures, In
International Conference on Information Security and Cryptology ICISC 2001, volume
2288 of LNCS, Springer-Verlag, 2001, pp. 285–304.

22 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25

https://eprint.iacr.org/2018/970
https://eprint.iacr.org/2018/970


APPENDICES

A. Appendix A: Presentation Contents

This appendix contains the presentation held at Bern University of Applied Sciences on January 25th,
2019. The image A.1 was presented in animated form using Sozi1, the animation may be obtained
from the author upon request.

1http://sozi.baierouge.fr/

Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25 23

http://sozi.baierouge.fr/


S
a
n

itiza
b

le
 a

n
d

 R
e
d

a
cta

b
le

S
ig

n
a
tu

re
s

P
a
sca

l M
a
in

in
i, 2

0
1

9
-0

1
-2

5

D
igital Signature Schem

es

C
lassical D

SS

B
lind Signatures

U
ndeniable Signatures

M
alleable (A

lgebraic) Signatures

D
esignated V

erifier Signatures

Functional Signatures

A
ggregate Signatures

For A
rithm

etics

For 'editing'

O
perational Signatures

H
om

om
orphic

H
om

om
orphic A

ggregate

R
edactable

Sanitizable

A
ppend-only

T
ransitive

A
lgebraic for Sets

L
inear

Polynom
ial

Full

Protean

G
roup Signatures

R
ing Signatures

B
lank Signatures

Proxy Signatures

Policy-based Signatures

A
ttribute-based Signatures

C
la

ssic D
S

S

O
ve

rvie
w

R
e
d

a
cta

b
le

S
ig

n
a
tu

re
s S

a
n

itiza
b

le
S

ig
n

a
tu

re
s

G
o
a
ls

M
o
tiva

tio
n

???

(pk,sk)
←

K
eyG

en(1
λ)

σ
←

S
ign(sk,m

)

b
←

V
erify(pk,σ,m

)
b
∈
{0,1}

(pk,sk)
←

K
eyG

en(1
λ)

σ
←

S
ign(sk,m

)

b
←

V
erify(pk,σ,m

)
b
∈
{0,1}

(m
',σ

')
←

R
edact(pk,σ,m

,m
od
)

(pk
sig ,sk

sig )
←

K
eyG

en
sig (1

λ)
(pk

san ,sk
san )

←
K
eyG

en
san (1

λ)

σ
←

S
ign(sk

sig ,pk
san ,m

,adm
)

(m
',σ

')
←

S
anitize(pk

sig ,sk
san ,m

,σ,m
od
)

b
←

V
erify(pk

sig ,pk
san ,σ,m

)
b
∈
{0,1}

π
←

P
roof(sk

sig ,pk
san ,m

,σ,(m
1 ,σ

1 ),...,(m
k ,σ

k ))
π
∈
{0,1}

∗

d
←

Judge(pk
sig ,pk

san ,σ,m
,π
)

d
∈
{sig,san}

C
o
rre

ctn
e
ss

U
n

fo
rg

e
a
b

ility

E
U

F
-C

M
A

(S
e
c
u

rity) N
o
tio

n
s

C
o
rre

ctn
e
ss

U
n

fo
rg

e
a
b

ility

P
riva

cy

T
ra

n
sp

a
re

n
cy

(S
e
c
u

rity) N
o
tio

n
s

(S
e
c
u

rity) N
o
tio

n
s

C
o
rre

ctn
e
ss

U
n

fo
rg

e
a
b

ility

P
riva

cy

T
ra

n
sp

a
re

n
cy

A
cco

u
n

ta
b

ility

Im
m

u
ta

b
ility

C
o
n

stru
ctio

n
s

B
la

ck
-B

o
x

C
o
n

cre
te

Figure
A

.1.:Presentation
contents

2019-01-25

24 Sanitizable and Redactable Signatures, Version 1.0, 2019-01-25


	Abstract
	Introduction
	Digital Signature Schemes
	Classic Digital Signature Schemes
	Functional and Malleable Signature Schemes
	General Frameworks
	Specific Functional Signatures
	Specific Malleable Signatures

	Further Digital Signature Schemes
	Blind Signatures
	Aggregate Signatures
	Undeniable Signatures
	Designated Verifier Signatures


	Sanitizable and Redactable Signatures
	Sanitizable Signature Schemes
	Definition
	State of the Art

	Redactable Signature Schemes
	Definition
	State of the Art

	Security Notions
	Common Security Notions
	Security Notions for SSS
	Relations Between Notions


	Conclusion and Outlook
	Glossary
	Bibliography
	APPENDICES
	Appendix A: Presentation Contents

